A comment on "The domination number of exchanged hypercubes"

نویسنده

  • Pranava K. Jha
چکیده

This note presents a technical improvement to an upper bound in “The domination number of exchanged hypercubes” [Inform. Proc. Lett., 114 (2014) 159-162] by Klavžar and Ma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The domination number of exchanged hypercubes

Exchanged hypercubes [Loh et al., IEEE Transactions on Parallel and Distributed Systems 16 (2005) 866–874] are spanning subgraphs of hypercubes with about one half of their edges but still with many desirable properties of hypercubes. Lower and upper bounds on the domination number of exchanged hypercubes are proved which in particular imply that γ(EH(2, t)) = 2 holds for any t ≥ 2. Using Hammi...

متن کامل

On domination-type invariants of Fibonacci cubes and hypercubes

The Fibonacci cube Γn is the subgraph of the n-dimensional cube Qn induced by the vertices that contain no two consecutive 1s. Using integer linear programming, exact values are obtained for γt(Γn), n ≤ 12. Consequently, γt(Γn) ≤ 2Fn−10 + 21Fn−8 holds for n ≥ 11, where Fn are the Fibonacci numbers. It is proved that if n ≥ 9, then γt(Γn) ≥ d(Fn+2 − 11)/(n− 3)e−1. Using integer linear programmin...

متن کامل

A Note on “on The Power Dominating Sets of Hypercubes”

1. Any vertex that is incident to an observed edge is observed. 2. Any edge joining two observed vertices is observed. The power domination problem is a variant of the classical domination problem in graphs and is defined as follows. Given an undirected graph G = (V, E), the problem is to find a minimum vertex set SP ⊆ V , called the power dominating set of G, such that all vertices in G are ob...

متن کامل

On the super domination number of graphs

The open neighborhood of a vertex $v$ of a graph $G$ is the set $N(v)$ consisting of all vertices adjacent to $v$ in $G$. For $Dsubseteq V(G)$, we define $overline{D}=V(G)setminus D$. A set $Dsubseteq V(G)$ is called a super dominating set of $G$ if for every vertex $uin overline{D}$, there exists $vin D$ such that $N(v)cap overline{D}={u}$. The super domination number of $G$ is the minimum car...

متن کامل

Some Results on the Maximal 2-Rainbow Domination Number in Graphs

A 2-rainbow dominating function ( ) of a graph  is a function  from the vertex set  to the set of all subsets of the set  such that for any vertex  with  the condition  is fulfilled, where  is the open neighborhood of . A maximal 2-rainbow dominating function on a graph  is a 2-rainbow dominating function  such that the set is not a dominating set of . The weight of a maximal    is the value . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Process. Lett.

دوره 115  شماره 

صفحات  -

تاریخ انتشار 2015